Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Res Sq ; 2023 Apr 28.
Article in English | MEDLINE | ID: covidwho-2316728

ABSTRACT

We report the direct comparison of monomeric, dimeric and trimeric RBD protein subunit vaccines to a virus-like particle (VLP) displaying RBD. After two and three doses, a RBD dimer and trimer elicited antibody levels in mice comparable to an RBD-VLP. Furthermore, an Omicron (BA.1) RBD hetero-dimer induced neutralizing activity similar to the RBD-VLP. A RBD hetero-dimer and RBD-VLP also shows comparable breadth to other SARS-CoV-2 variants-of-concern (VOCs).

2.
Nat Commun ; 14(1): 1944, 2023 04 07.
Article in English | MEDLINE | ID: covidwho-2304001

ABSTRACT

Omicron spike (S) encoding vaccines as boosters, are a potential strategy to improve COVID-19 vaccine efficacy against Omicron. Here, macaques (mostly females) previously immunized with Ad26.COV2.S, are boosted with Ad26.COV2.S, Ad26.COV2.S.529 (encoding Omicron BA.1 S) or a 1:1 combination of both vaccines. All booster vaccinations elicit a rapid antibody titers increase against WA1/2020 and Omicron S. Omicron BA.1 and BA.2 antibody responses are most effectively boosted by vaccines including Ad26.COV2.S.529. Independent of vaccine used, mostly WA1/2020-reactive or WA1/2020-Omicron BA.1 cross-reactive B cells are detected. Ad26.COV2.S.529 containing boosters provide only slightly higher protection of the lower respiratory tract against Omicron BA.1 challenge compared with Ad26.COV2.S-only booster. Antibodies and cellular immune responses are identified as complementary correlates of protection. Overall, a booster with an Omicron-spike based vaccine provide only moderately improved immune responses and protection compared with the original Wuhan-Hu-1-spike based vaccine, which still provide robust immune responses and protection against Omicron.


Subject(s)
COVID-19 , Vaccines , Female , Animals , Humans , Male , Ad26COVS1 , COVID-19 Vaccines , Macaca , SARS-CoV-2 , COVID-19/prevention & control , Antibodies, Neutralizing , Antibodies, Viral
3.
Cell Rep Med ; 4(4): 101018, 2023 04 18.
Article in English | MEDLINE | ID: covidwho-2288041

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines demonstrate reduced protection against acquisition of BA.5 subvariant but are still effective against severe disease. However, immune correlates of protection against BA.5 remain unknown. We report the immunogenicity and protective efficacy of vaccine regimens consisting of the vector-based Ad26.COV2.S vaccine and the adjuvanted spike ferritin nanoparticle (SpFN) vaccine against a high-dose, mismatched Omicron BA.5 challenge in macaques. The SpFNx3 and Ad26 + SpFNx2 regimens elicit higher antibody responses than Ad26x3, whereas the Ad26 + SpFNx2 and Ad26x3 regimens induce higher CD8 T cell responses than SpFNx3. The Ad26 + SpFNx2 regimen elicits the highest CD4 T cell responses. All three regimens suppress peak and day 4 viral loads in the respiratory tract, which correlate with both humoral and cellular immune responses. This study demonstrates that both homologous and heterologous regimens involving Ad26.COV2.S and SpFN vaccines provide robust protection against a mismatched BA.5 challenge in macaques.


Subject(s)
COVID-19 , Nanoparticles , Vaccines , Humans , Animals , Macaca , Ad26COVS1 , COVID-19/prevention & control , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Ferritins
4.
Nat Hum Behav ; 7(4): 529-544, 2023 04.
Article in English | MEDLINE | ID: covidwho-2253571

ABSTRACT

Preterm birth (PTB) is the leading cause of infant mortality worldwide. Changes in PTB rates, ranging from -90% to +30%, were reported in many countries following early COVID-19 pandemic response measures ('lockdowns'). It is unclear whether this variation reflects real differences in lockdown impacts, or perhaps differences in stillbirth rates and/or study designs. Here we present interrupted time series and meta-analyses using harmonized data from 52 million births in 26 countries, 18 of which had representative population-based data, with overall PTB rates ranging from 6% to 12% and stillbirth ranging from 2.5 to 10.5 per 1,000 births. We show small reductions in PTB in the first (odds ratio 0.96, 95% confidence interval 0.95-0.98, P value <0.0001), second (0.96, 0.92-0.99, 0.03) and third (0.97, 0.94-1.00, 0.09) months of lockdown, but not in the fourth month of lockdown (0.99, 0.96-1.01, 0.34), although there were some between-country differences after the first month. For high-income countries in this study, we did not observe an association between lockdown and stillbirths in the second (1.00, 0.88-1.14, 0.98), third (0.99, 0.88-1.12, 0.89) and fourth (1.01, 0.87-1.18, 0.86) months of lockdown, although we have imprecise estimates due to stillbirths being a relatively rare event. We did, however, find evidence of increased risk of stillbirth in the first month of lockdown in high-income countries (1.14, 1.02-1.29, 0.02) and, in Brazil, we found evidence for an association between lockdown and stillbirth in the second (1.09, 1.03-1.15, 0.002), third (1.10, 1.03-1.17, 0.003) and fourth (1.12, 1.05-1.19, <0.001) months of lockdown. With an estimated 14.8 million PTB annually worldwide, the modest reductions observed during early pandemic lockdowns translate into large numbers of PTB averted globally and warrant further research into causal pathways.


Subject(s)
COVID-19 , Premature Birth , Stillbirth , Female , Humans , Infant , Infant, Newborn , Pregnancy , Communicable Disease Control , COVID-19/epidemiology , COVID-19/prevention & control , Pandemics/prevention & control , Premature Birth/epidemiology , Stillbirth/epidemiology
5.
NPJ Vaccines ; 8(1): 23, 2023 Feb 23.
Article in English | MEDLINE | ID: covidwho-2264251

ABSTRACT

Despite the availability of several effective SARS-CoV-2 vaccines, additional vaccines will be required for optimal global vaccination. In this study, we investigate the immunogenicity and protective efficacy of the GBP510 protein subunit vaccine adjuvanted with AS03, which has recently been authorized for marketing in South Korea under the trade name SKYCovioneTM. The antigen in GBP510/AS03 is a two-part recombinant nanoparticle, which displays 60 receptor binding domain (RBD) proteins of SARS-CoV-2 Spike on its surface. In this study we show that GBP510/AS03 induced robust immune responses in rhesus macaques and protected against a high-dose SARS-CoV-2 Delta challenge. We vaccinated macaques with two or three doses of GBP510/AS03 matched to the ancestral Wuhan strain of SARS-CoV-2 or with two doses of GBP510/AS03 matched to the ancestral strain and one dose matched to the Beta strain. Following the challenge with Delta, the vaccinated macaques rapidly controlled the virus in bronchoalveolar lavage and nasal swabs. Binding and neutralizing antibody responses prior to challenge correlated with protection against viral replication postchallenge. These data are consistent with data with this vaccine from the phase 3 clinical trial.

8.
Sci Adv ; 8(47): eade4433, 2022 Nov 25.
Article in English | MEDLINE | ID: covidwho-2137357

ABSTRACT

Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and waning immunity call for next-generation vaccine strategies. Here, we assessed the immunogenicity and protective efficacy of two SARS-CoV-2 vaccines targeting the WA1/2020 spike protein, Ad26.COV2.S (Ad26) and Spike ferritin Nanoparticle (SpFN), in nonhuman primates, delivered as either a homologous (SpFN/SpFN and Ad26/Ad26) or heterologous (Ad26/SpFN) prime-boost regimen. The Ad26/SpFN regimen elicited the highest CD4 T cell and memory B cell responses, the SpFN/SpFN regimen generated the highest binding and neutralizing antibody responses, and the Ad26/Ad26 regimen generated the most robust CD8 T cell responses. Despite these differences, protective efficacy against SARS-CoV-2 Omicron BA.1 challenge was similar for all three regimens. After challenge, all vaccinated monkeys showed significantly reduced peak and day 4 viral loads in both bronchoalveolar lavage and nasal swabs as compared with sham animals. The efficacy conferred by these three immunologically distinct vaccine regimens suggests that both humoral and cellular immunity contribute to protection against SARS-CoV-2 Omicron challenge.

9.
NPJ Vaccines ; 7(1): 125, 2022 Oct 27.
Article in English | MEDLINE | ID: covidwho-2087218

ABSTRACT

The COVID-19 pandemic marks the third coronavirus pandemic this century (SARS-CoV-1, MERS, SARS-CoV-2), emphasizing the need to identify and evaluate conserved immunogens for a pan-sarbecovirus vaccine. Here we investigate the potential utility of a T-cell vaccine strategy targeting conserved regions of the sarbecovirus proteome. We identified the most conserved regions of the sarbecovirus proteome as portions of the RNA-dependent RNA polymerase (RdRp) and Helicase proteins, both of which are part of the coronavirus replication transcription complex (RTC). Fitness constraints suggest that as SARS-CoV-2 continues to evolve these regions may better preserve cross-reactive potential of T-cell responses than Spike, Nucleocapsid, or Membrane proteins. We sought to determine if vaccine-elicited T-cell responses to the highly conserved regions of the RTC would reduce viral loads following challenge with SARS-CoV-2 in mice using a rhesus adenovirus serotype 52 (RhAd52) vector. The RhAd52.CoV.Consv vaccine generated robust cellular immunity in mice and led to significant reductions in viral loads in the nasal turbinates following challenge with a mouse-adapted SARS-CoV-2. These data suggest the potential utility of T-cell targeting of conserved regions for a pan-sarbecovirus vaccine.

11.
J Am Pharm Assoc (2003) ; 62(6): 1761-1764, 2022.
Article in English | MEDLINE | ID: covidwho-2004191

ABSTRACT

The coronavirus disease 2019 pandemic has escalated the ongoing problem of critical medication shortages, which has serious implications for the health of our patients. Currently, active pharmaceutical ingredients (APIs) are synthesized in large-scale batch operations and shipped to drug product manufacturers, where they are produced on a large scale at centralized facilities. In the centralized drug manufacturing process, the formulation components, operations, and packaging are structured to favor long-term storage and shipment of resultant medicines to the point of care, making this process vulnerable to supply chain disruptions. We propose a rethinking of the drug manufacturing paradigm with an upgraded pharmaceutical compounding-based manufacturing paradigm. This paradigm will be based on integration of continuous manufacturing of APIs and manufacturing of medicines at the point of care with application of machine learning, artificial intelligence, and 3-dimensional printing. This paradigm will support implementation of precision medicine and customization according to patients' needs. The new model of drug manufacturing will be less dependent on the supply chain while ensuring availability of medicines in a cost-effective manner.


Subject(s)
COVID-19 Drug Treatment , Pharmacy , Humans , Technology, Pharmaceutical/methods , Drug Industry , Artificial Intelligence , Pharmaceutical Preparations
12.
Sci Immunol ; 7(77): eabq7647, 2022 Nov 18.
Article in English | MEDLINE | ID: covidwho-1986327

ABSTRACT

Spike-specific neutralizing antibodies (NAbs) are generally considered key correlates of vaccine protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Recently, robust vaccine prevention of severe disease with SARS-CoV-2 variants that largely escape NAb responses has been reported, suggesting a role for other immune parameters for virologic control. However, direct data demonstrating a role of CD8+ T cells in vaccine protection have not yet been reported. In this study, we show that vaccine-elicited CD8+ T cells contribute substantially to virologic control after SARS-CoV-2 challenge in rhesus macaques. We vaccinated 30 macaques with a single immunization of the adenovirus vector-based vaccine Ad26.COV2.S or sham and then challenged them with 5 × 105 median tissue culture infectious dose SARS-CoV-2 B.1.617.2 (Delta) by the intranasal and intratracheal routes. All vaccinated animals were infected by this high-dose challenge but showed rapid virologic control in nasal swabs and bronchoalveolar lavage by day 4 after challenge. However, administration of an anti-CD8α- or anti-CD8ß-depleting monoclonal antibody in vaccinated animals before SARS-CoV-2 challenge resulted in higher levels of peak and day 4 virus in both the upper and lower respiratory tracts. These data demonstrate that CD8+ T cells contribute substantially to vaccine protection against SARS-CoV-2 replication in macaques.


Subject(s)
COVID-19 , Viral Vaccines , Animals , Humans , SARS-CoV-2 , CD8-Positive T-Lymphocytes , Macaca mulatta , Ad26COVS1 , COVID-19/prevention & control
14.
Cell ; 185(9): 1549-1555.e11, 2022 04 28.
Article in English | MEDLINE | ID: covidwho-1748149

ABSTRACT

The rapid spread of the SARS-CoV-2 Omicron (B.1.1.529) variant, including in highly vaccinated populations, has raised important questions about the efficacy of current vaccines. In this study, we show that the mRNA-based BNT162b2 vaccine and the adenovirus-vector-based Ad26.COV2.S vaccine provide robust protection against high-dose challenge with the SARS-CoV-2 Omicron variant in cynomolgus macaques. We vaccinated 30 macaques with homologous and heterologous prime-boost regimens with BNT162b2 and Ad26.COV2.S. Following Omicron challenge, vaccinated macaques demonstrated rapid control of virus in bronchoalveolar lavage, and most vaccinated animals also controlled virus in nasal swabs. However, 4 vaccinated animals that had moderate Omicron-neutralizing antibody titers and undetectable Omicron CD8+ T cell responses failed to control virus in the upper respiratory tract. Moreover, virologic control correlated with both antibody and T cell responses. These data suggest that both humoral and cellular immune responses contribute to vaccine protection against a highly mutated SARS-CoV-2 variant.


Subject(s)
Ad26COVS1/immunology , BNT162 Vaccine/immunology , COVID-19 , Macaca , SARS-CoV-2 , Ad26COVS1/administration & dosage , Animals , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine/administration & dosage , COVID-19/immunology , COVID-19/prevention & control , T-Lymphocytes/immunology
16.
Wellcome Open Res ; 6: 21, 2021.
Article in English | MEDLINE | ID: covidwho-1497928

ABSTRACT

Preterm birth is the leading cause of infant death worldwide, but the causes of preterm birth are largely unknown. During the early COVID-19 lockdowns, dramatic reductions in preterm birth were reported; however, these trends may be offset by increases in stillbirth rates. It is important to study these trends globally as the pandemic continues, and to understand the underlying cause(s). Lockdowns have dramatically impacted maternal workload, access to healthcare, hygiene practices, and air pollution - all of which could impact perinatal outcomes and might affect pregnant women differently in different regions of the world. In the international Perinatal Outcomes in the Pandemic (iPOP) Study, we will seize the unique opportunity offered by the COVID-19 pandemic to answer urgent questions about perinatal health. In the first two study phases, we will use population-based aggregate data and standardized outcome definitions to: 1) Determine rates of preterm birth, low birth weight, and stillbirth and describe changes during lockdowns; and assess if these changes are consistent globally, or differ by region and income setting, 2) Determine if the magnitude of changes in adverse perinatal outcomes during lockdown are modified by regional differences in COVID-19 infection rates, lockdown stringency, adherence to lockdown measures, air quality, or other social and economic markers, obtained from publicly available datasets. We will undertake an interrupted time series analysis covering births from January 2015 through July 2020. The iPOP Study will involve at least 121 researchers in 37 countries, including obstetricians, neonatologists, epidemiologists, public health researchers, environmental scientists, and policymakers. We will leverage the most disruptive and widespread "natural experiment" of our lifetime to make rapid discoveries about preterm birth. Whether the COVID-19 pandemic is worsening or unexpectedly improving perinatal outcomes, our research will provide critical new information to shape prenatal care strategies throughout (and well beyond) the pandemic.

17.
Br J Clin Pharmacol ; 88(3): 1143-1151, 2022 03.
Article in English | MEDLINE | ID: covidwho-1360463

ABSTRACT

AIMS: Public health responses to reduce SARS-CoV-2 transmission have profoundly affected the epidemiology and management of other infections. We examined the impact of COVID-19 restrictions on antibiotic dispensing in Australia. METHODS: We used national claims data to investigate antibiotic dispensing trends from November 2015 to October 2020 and whether changes reflected reductions in primary care consultations. We used interrupted time series analysis to quantify changes in monthly antibiotic dispensing and face-to-face and telehealth GP consultations and examined changes by recipient age, pharmacy State and prescriber specialty. RESULTS: Over the study period, an estimated 19 921 370 people had 125 495 137 antibiotic dispensings, 71% prescribed by GPs. Following COVID-19 restrictions, we observed a sustained 36% (95% CI: 33-40%) reduction in antibiotic dispensings from April 2020. Antibiotics recommended for managing respiratory tract infections showed large reductions (range 51-69%), whereas those recommended for non-respiratory infections were unchanged. Dispensings prescribed by GPs decreased from 63.5 per 1000 population for April-October 2019 to 37.0 per 1000 for April-October 2020. Total GP consultation rates remained stable, but from April 2020, 31% of consultations were telehealth. CONCLUSION: In a setting with a low COVID-19 incidence, restrictions were associated with a substantial reduction in community dispensings of antibiotics primarily used to treat respiratory infections, coincident with reported reductions in respiratory viral infections. Our findings are informative for post-pandemic antimicrobial stewardship and highlight the potential to reduce inappropriate prescribing by GPs and specialists for respiratory viral infections.


Subject(s)
Antimicrobial Stewardship , COVID-19 , Anti-Bacterial Agents/therapeutic use , Humans , Inappropriate Prescribing/prevention & control , Pandemics , Practice Patterns, Physicians' , SARS-CoV-2
18.
J Appl Lab Med ; 7(1): 57-65, 2022 01 05.
Article in English | MEDLINE | ID: covidwho-1338715

ABSTRACT

BACKGROUND: In North America, both messenger RNA (mRNA) vaccines, Pfizer-BioNTech BNT162b2, and Moderna mRNA-1273, each utilizing a 2-dose regimen, have started to be administered to individuals. METHODS: We evaluated the quantitative serologic antibody response following administration of either a single dose or both doses of an mRNA severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine in a cohort of 98 participants (88 healthcare workers [HCW] and 10 solid organ transplant [SOT] recipients). Antibody levels were compared across 3 immunoassays: Elecsys Anti-SARS-CoV-2 S (Roche Diagnostics), SARS-CoV-2 TrimericS IgG (DiaSorin), and SARS-CoV-2 IgG II Quant (Abbott). RESULTS: Among HCW, sensitivity ranged from 100% (Roche), 99% (Abbott) and 98% (DiaSorin). The SARS-CoV-2 IgG II Quant and SARS-CoV-2 TrimericS IgG assays showed good agreement with a Pearson correlation coefficient of R = 0.95. Pearson correlation coefficients of R = 0.82 and 0.83 were obtained for Elecsys Anti-SARS-CoV-2 S vs SARS-CoV-2 TrimericS IgG and SARS-CoV-2 IgG II Quant vs Elecsys Anti-SARS-CoV-2 S, respectively. Significant differences in antibody levels between HCW and SOT recipients were observed. A decrease in antibody levels from time of vaccine administration to blood draw was evident. Among those with a second dose, an increase in antibody levels with increased time between administration of the first and second dose was observed. CONCLUSIONS: The absolute values generated from each of the assay platforms are not interchangeable. Antibody levels differed with increased time between vaccine administration and with increased time between administration of the first and second dose. Further, significant differences in antibody levels between HCW and SOT recipients were observed.


Subject(s)
COVID-19 , SARS-CoV-2 , 2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , COVID-19 Vaccines , Humans , Immunoassay
19.
Int J Epidemiol ; 50(5): 1435-1443, 2021 11 10.
Article in English | MEDLINE | ID: covidwho-1246713

ABSTRACT

BACKGROUND: Infectious diseases are a leading cause of hospitalization during childhood. The various mitigation strategies implemented to control the coronavirus disease (COVID-19) pandemic could have additional, unintended benefits for limiting the spread of other infectious diseases and their associated burden on the health care system. METHODS: We conducted an interrupted time-series analysis using population-wide hospitalization data for the state of Victoria, Australia. Infection-related hospitalizations for children and adolescents (aged <18 years, total source population ∼1.4 million) were extracted using pre-defined International Classification of Diseases 10th Revision Australian Modification (ICD-10-AM) codes. The change in weekly hospitalization rates (incidence rate ratio, IRR) for all infections following the introduction of pandemic-related restrictions from 15 March 2020 was estimated. RESULTS: Over 2015-19, the mean annual incidence of hospitalization with infection among children less than 18 years was 37 per 1000 population. There was an estimated 65% (95% CI 62-67%) reduction in the incidence of overall infection-related hospitalizations associated with the introduction of pandemic restrictions. The reduction was most marked in younger children (at least 66% in those less than 5 years of age) and for lower respiratory tract infections (relative reduction 85%, 95% CI 85-86%). CONCLUSIONS: The wider impacts of pandemic mitigation strategies on non-COVID-19 infection-related hospitalizations are poorly understood. We observed marked and rapid decreases in hospitalized childhood infection. In tandem with broader consequences, sustainable measures, such as improved hand hygiene, could reduce the burden of severe childhood infection post-pandemic and the social and economic costs of hospitalization.


Subject(s)
COVID-19 , Pandemics , Adolescent , Child , Hospitalization , Humans , Pandemics/prevention & control , SARS-CoV-2 , Victoria/epidemiology
20.
Diabetes Care ; 44(6): 1281-1290, 2021 06.
Article in English | MEDLINE | ID: covidwho-1190256

ABSTRACT

OBJECTIVE: Obesity is an established risk factor for severe coronavirus disease 2019 (COVID-19), but the contribution of overweight and/or diabetes remains unclear. In a multicenter, international study, we investigated if overweight, obesity, and diabetes were independently associated with COVID-19 severity and whether the BMI-associated risk was increased among those with diabetes. RESEARCH DESIGN AND METHODS: We retrospectively extracted data from health care records and regional databases of hospitalized adult patients with COVID-19 from 18 sites in 11 countries. We used standardized definitions and analyses to generate site-specific estimates, modeling the odds of each outcome (supplemental oxygen/noninvasive ventilatory support, invasive mechanical ventilatory support, and in-hospital mortality) by BMI category (reference, overweight, obese), adjusting for age, sex, and prespecified comorbidities. Subgroup analysis was performed on patients with preexisting diabetes. Site-specific estimates were combined in a meta-analysis. RESULTS: Among 7,244 patients (65.6% overweight/obese), those with overweight were more likely to require oxygen/noninvasive ventilatory support (random effects adjusted odds ratio [aOR], 1.44; 95% CI 1.15-1.80) and invasive mechanical ventilatory support (aOR, 1.22; 95% CI 1.03-1.46). There was no association between overweight and in-hospital mortality (aOR, 0.88; 95% CI 0.74-1.04). Similar effects were observed in patients with obesity or diabetes. In the subgroup analysis, the aOR for any outcome was not additionally increased in those with diabetes and overweight or obesity. CONCLUSIONS: In adults hospitalized with COVID-19, overweight, obesity, and diabetes were associated with increased odds of requiring respiratory support but were not associated with death. In patients with diabetes, the odds of severe COVID-19 were not increased above the BMI-associated risk.


Subject(s)
COVID-19 , Diabetes Mellitus , Adult , Body Mass Index , Hospitals , Humans , Obesity/complications , Obesity/epidemiology , Overweight/epidemiology , Retrospective Studies , Risk Factors , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL